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The flow of a liquid heat carrier is examined in a channel heat pipe. A depend- 
ence of the limit thermal fluxes on the regime parameters and the geometry of 
the capillaries is obtained. 

In recent years the domain of heat pipe (HP) application has expanded significantly. 
The demands imposed on it have also become more diverse. For certain HP the magnitude of the 
motive forces, including the capillary forces also, can change substantially depending on 
the geometry of the wick structure, the wetting angle, and the physical properties of the 
heat carrier. 

Channel HP that have axial or spiral capillaries of different cross section as wick can 
produce considerable capillary pressure and have low hydraulic drag. From this viewpoint, 
capillaries of triangular cross section are one of the promising wick structures in which 
the hydrodynamics and heat transfer have been investigated in a number of papers [1-4]. How- 
ever, until now there have not been either experimental or theoretical data permitting the 
determination of the operating and limit characteristics of channel HP with triangular capil- 
lary profile and the optimization of the channel structure. 

At this time one- and two-dimensional models are known by which the characteristics of 
channel HP can be computed [1-4]. The two-dimensional model proposed in [I] takes into ac- 
count the change in the drag coefficient as a function of the wetting angle and the aperture 
half-angle of the capillary. However, the model describes just fully developed flow of the 
heat carrier under the effect of the gravitational forces. The radius of curvature of the 
fluid meniscus is constant along the length. A change occurs in the radius of curvature of 
the meniscus along the HP length in real HP. This circumstance is taken into account in the 
one-dimensional models proposed in [2-4]. On the basis of the assumption on the equality 
of gradients of the capillary and hydraulic pressures, the evaporation phase of a channel 
HP is considered for boundary conditions of the third [2, 3] and second kind [4]. The proposed 
dependences to determine the maximum heat-flux density are valid only in the absence of gravi- 
tation. Moreover, a factor determined from experimental data is contained in the expression 
for the maximum heat-flux density in [3]. 

The model proposed in this paper permits computation of HP characteristics with the action 
of inertial forces and gravitation on the heat carrier taken into account. The method is 
based on the following assumptions: i) the capillary cross section has a regular triangular 
shape with apex angle 2~i,; 2) the radius of curvature R of the fluid meniscus is constant over 
the capillary cross section; 3) the heat elimination and heat delivery are realized for bound- 
ary conditions of the second kind (q = const); consequently, the evaporation and condensation 
rates are constant along the length of the evaporator and condenser and are known in the formu- 
lation of the problem. 

The whole length of the HP is provisionally divided into two sections: the first section 
is the angle of contact between the fluid and the solid wall ~(z) changing from (4/2 - ~) 
(i.e., a plane meniscus) to the wetting angle ~ characteristic for this heat carrier-wall 
material pair. At the end of this section, the magnitude of the wetted wall r w equals the 
capillary wall height rw0. The second section is the angle of contact between the fluid and 
solid wall and the wetting angle ~ being equal and constant, while the magnitude of the wetted 
capillary wall r w changes along the length of the section. It is assumed in the analysis that 
the thermophysical properties of the heat carrier are constant along the HP, while the tangen- 
tial interaction between the fluid and vapor is slight. 
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Fig. i. Geometry of a 
triangular capillary. 

For a fluid volume element in a HP capillary operating in the evaporation mode, the in- 
tegral equation for momentum and mass conservation in a cylindrical coordinate system (Fig. 
i) has the form 

2 o i w -/d;aO= --2 I - ?  . . . . .  ( 1 )  
XT-o o ~ \ a o  )o=~ -a~  = -  az k R,, 

'P ~ (2)  
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where ~(z )  = 9vVeS0(Le - z)  f o r  t h e  e v a p o r a t i o n  zone ,  r  = pvVcg0z f o r  t h e  c o n d e n s a t i o n  
zone ,  and r  = pvVcSoLo f o r  t h e  a d i a b a t i c  zone .  

The f i r s t  t e rm o f  (1)  t a k e s  a c c o u n t  o f  t h e  change  in  momentum o f  a f l u i d  volume e l emen t  
under the effect of inertial forces, the second is the momentum loss because of friction on 
the capillary wall, the third because of gravitation, and the fourth term takes account of 
the change in momentum because of the change in capillary pressure. 

To reduce (i) and (2) to dimensionless form, we consider that rw = rw0$(z), where ~(z) is 
the dimensionless function of the deepening of the fluid meniscus along the HP length, and 
that 

r r~0 z" W-- W (3)  
r S o ,  G :  So , z = g ' W o 

From the geometric relationships, the radius of the fluid meniscus is determined as 

rs := r,~0~ (z) A, (4)  

where t h e  p a r a m e t e r  A t a k e s  a c c o u n t  o f  t h e  dependence  o f  r s  on t h e  h a l f - a n g l e  ~ o f  t h e  c a p i l -  
l a r y  and t h e  a n g l e  o f  f l u i d  c o n t a c t  w i t h  t h e  w a l l  m a t e r i a l  ~ ( z )  and e q u a l s  

A cosh~ cos ,~ - -  r sin 2 ~o - -  sin = 0 cos ~ 4 ( 5 )  

cos (4 + ~) 

In  d i m e n s i o n l e s s  form t h e  i n t e g r a l  e q u a t i o n s  o f  mass and momentum c o n s e r v a t i o n  have  t h e  
form 

j I rWdrdO, (6) 
L o 

0 r~ @W 
1 -~- C Fr _ . 0 _  (zr~) + - (G,,). ( 7 )  oz .f Ir  drd~ 1 (-:', ( _ g _  dr 2 o 
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Here B = cos~cos(4  @ ~) sin ~ ( ~ / 2 - - 4 - - ~ )  + sin ~ sin(4 + ~), C = B sin 
cos (4 + ~) cos (4  + ~) 

For the different HP sections - evaporation, condensation, adiabatic - th~function ~(z) 
in (7) has the following expressions: 
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r  O ( z ) = z ;  O ( z ) = l .  ( 8 )  

The v a l u e  o f  W0 i s  d e t e r m i n e d  f rom ( 7 )  a s  W 0 = ( p v / p L ) V e f o r  t h e  e v a p o r a t i o n  z o n e  and W 0 = 
( p v / p L ) V c  f o r  t h e  a d i a b a t i c  and c o n d e n s a t i o n  z o n e s .  

The s o l u t i o n  o f  s y s t e m  ( 6 ) ,  ( 7 )  i s  s o u g h t  by t h e  K a r m a n - P o h l h a u s e n  m e t h o d  w i t h  t h e  l o n g i -  
t u d i n a l  v e l o c i t y  a p p r o x i m a t e d  by t h e  e x p r e s s i o n  

/ cos O 
W (r, O, z) r" / I ! f (z), 

\ COS ~' 
which satisfies the boundary conditions 

( 9 )  

OW o=o W(r ,  O, z)[o=,~ =: 0; -00--0-- .... 0. (10)  

Nonlinear first-order differential equations in the angle of contact 0(z) and the dimen- 
sionless magnitude of the meniscus deepening $(z) are obtained from the joint solution of 
(6), (7), and (9): 

~' (z) = ( N  - -  K)  z~ (z) - -  D~ (z) 5 

Nz~ -F 2Dz~ (z) ~ --[- E~ (z) 3 ' 
(11)  

in the condensation zone; 

t l / (z)  = ( K - - N )  z +  D 
--Mz~ + Pz - -  R 

(12)  

~' (z) = K~ (z) @ D~ (z)5 , ( 13  ) 
E~ (z) 3 + 2Dz~ (z) ~ + N 

in the adiabatic zone: 

~' (z) : 

K + D ( 1 4 )  ~' (z) = 
P z + M O R  

(M + N) (1 -- z) ~ (z) + P~ (z) 5 

E~ (z) a + 2Pz~ (z) ~ + 4A" (I -- z) 2 
( 1 5 )  

in the evaporation zone, where 

"r (z) = (K-b  N)(1 --z) + D 

M ( z - -  1)~ 4- Pz § R 
( 1 6 )  
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Fig. 2. Dependence of the maximal heat flux density qmax 
(W/m 2) on the slope ~ (deg) of the heat pipe (a), the wet- 
ting angle ~ (deg) (b), the evaporation length Le (m) (c): 
a) Le = Lc = 0.I m, La = 0.05 m, So = 0.3"10 -3 m, ~ = 0~ 
i) q0 = 5; 2) 15; 3) 30~ b) Le = L c = 0.i m, La = 0.05 m, 
So = 0.3'10 -3 m, X = 0~ i) ~ = 5; 2) 15; 3) 30~ c) So = 
0.3.10 -3 m, ~ = 0 ~ q0 = 15 ~ ' Le = Lc; i) La = 0; 2) 0.05; 
3) 0.25; 4) 0.5 m. 

R _ 

F .... 

We cos (9 + ~1') cos ( ,  + q~) , 

r ~ ' ~  c~ q~ c~ (q~ ~ ) We ~ ~') - -  ( a / 2  - -  q~ - -  r sin qD + sin q~ sin (~p -r- r  �9 
cos (q~ + , )  

As a result of solving (12), (14), (16) it was obtained that the section of a change 
in the contact angle ~(z) for limit heat fluxes and the work against gravity is quite in- 
significant (about 2-6% of Lc) and it need not be taken into account in the computations. 
Equations (ii), (13), (15) were solved numerically by the method of trial and error under 
the following boundary conditions: no fluid overflow in the condensation zone, and for z = 
0, $(z) = i, ~(z) = ~; there is no "dry wall" regime at the end of the evaporation zone, and for 
z = i, g(z) : 0.05. 

The results of a computation, presented in Fig. 2a, show the substantial influence of 
the HP slope on the maximum heat-flux density qmax transmitted by the HP: it is substantial- 
ly nonlinear in nature. 

It is ordinarily assumed in theoretical computations that the wetting angle ~, equal 
to zero, is best from the viewpoint of producing the greatest possible capillary pressure. 
However, computations did not confirm this (see Fig. 2b). The existence of maxima is ex- 
plained by the fact that as the wetting angle increases there is an optimal relationship be- 
tween the diminishing capillary pressure and the increasing through section of the capillary, 
i.e., the diminishing hydraulic drag to the fluid flow. As the capillary half-angle in- 
creases, the nature of the maxima becomes more and more definite. This circumstance can be 
used in selecting the wall material-heat carrier pair for any given geometry of the capillary. 

The question of the influence of the length of the adiabatic zone on the HP heat-transmit- 
ting capacity has received no attention in the literature until now. Computations show (Fig. 
2c) that, for sufficiently long evaporators, the adiabatic zone length has negligible influ- 
ence on the maximal heat-flux density. The adiabatic zone exerts the most substantial influ- 
ence on short (about 1 cm) evaporators, since namely there the greatest pressure losses 
in the fluid appear. 

Computations of the velocity profiles showed that on a major portion of the HP, with 
the exception of the end of the evaporator, z = (0.5-0.95)Le, the mean value of the longitud- 
inal velocity W is 0.2-0.5 m/sec for HP capillaries operating at the maximal heat load, and 
around 0.I m/sec for subcritical heat fluxes, i.e., the inertial component is here insignif- 
icant and about 4-8% of the moving capillary pressure. At the tip portion of the evaporation 
zone the mean fluid velocity can reach several tens of meters per second for a HP mode cor- 
responding to the limit. The inertial component here reaches 50-60% of the capillary pressure. 
In the case of thermal loads less than qmax, the change in the mean velocity of fluid motion 
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along the HP length becomes less substantial. Thus, for ~(z) = 0.3 and z = 0.9Le the mean 
velocity of fluid motion in the evaporator is 1 m/sec. Analysis of the results obtained per- 
mits making a deduction about the necessity of taking account of the inertial motion compon- 
ent only in the evaporation zone of the HP, where heat-carrier acceleration and deceleration 
phases exist. 

NOTATION 

r, e, z, coordinates in a cylindrical coordinate system; 9, capillary half-angle; rw, 
magnitude of the capillary wall wetted by the fluid; rs, radius of the fluid meniscus; rw0 , 
height of the capillary wall; So, capillar half-width; L, length of the heat pipe zone; R, 
radius of curvature of the fluid meniscus; F, capillary through section; ~(z), fluid contact 
angle with the wall material; ~, wetting angle; W0, axial velocity scale factor; W, axial 
velocity of heat carrier motion; 7, HP slope; V, evaporation or condensation rate; g(z), a 
dimensionless function of the fluid meniscus deepening; p, density; g, free-fall acceleration; 
o, surface tension coefficient; ~, dynamic viscosity; q, heat flux density; Fr, Re, We, Froude, 
Reynolds, and Weber numbers. Subscripts: e, evaporator; a, adiabatic zone, c, condenser; 
v, vapor; L, fluid; max, maximal. 
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CRISIS PHENOMENA UPON EVAPORATION IN GRID CAPILLARY AND POROUS COATINGS 

AND ARTERIAL STRUCTURES OF HEAT PIPES 

B. A. Afanas'ev, E. P. Vinogradova, and G. F. Smirnov UDC 536.248.2 

The article presents the results of experimental investigations of critical 
(limit) heat fluxes upon evaporation on porous coatings, and it substanti- 
ates the physical model of the process. 

When the density of heat fluxes in porous structures is high, processes of evaporation 
may be accompanied by abrupt infringements of the conditions of heat transfer, leading to a 
sudden and substantial increase of the wall temperature. Such phenomena are called crisis 
phenomena. 

According to the conditions of heat liberation and supply of heat carrier, the following 
situations may be distinguished. 

i. Heat is conducted from the wall to the wetted structure: a) with capillary supply 
of the heat carrier, b) by inundation, c) with combined supply. 

2. Heat is conducted from the skeleton to the heat carrier (internal heat liberation): 
a) under conditions of capillary supply; b) by inundation; c) with supply of liquid under 
the effect of pressure forces. 
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